
Support Vector Machines

Jing-Mao Ho

1 The Primal Form

A perceptron learning algorithm can find a separating hyperlane that dichotomizes the given data. If the
data are linearly separable, then a PLA guarantees a hyperplane. Note that theoretically there are infinite
separating hyperplanes. Therefore, here arises a question: how do we know, among those candidates, which
is the best one? First of all, we should define what ‘best” means here. By “best,” people usually mean the
hyperplane that neither overfits nor underfits the given set of data. In the case of linear classification, the
best hyperplane should be the one that has the largest distance to the closest data points of both groups.
We call the closet data points to the separating hyperplane support vectors. The algorithm that is able to
identify the support vectors of a given data set in order to find the “best” hyperplane is called support vector
machine.

Next, let’s specify the data and the notation. Assume

Xn×m =


x11 x12 x13 · · · x1m
x21 x22 x23 · · · x2m

...
...

...
. . .

...
xn1 xn2 xn3 · · · xnm

 , β̂m×1 =


β̂1
β̂2
...

β̂m

 , β̂0 = [β̂0],Yn×1 =


y1
y2
y3
...
yn


Since the goal of a support vector machine is to find the best hyperplane, the idea is somewhat similar

to, and actually built on, the perceptron learning algorithm. Recall that a perceptron, f̂(xi) = ŷi =

sign
(
X · β̂PLA + β̂0PLA

)
, aims at obtaining β̂PLA so that ŷi is equal to yi. For an SVM, the goal is to find a

separating hyperplane that has the largest “margin.” This means that now the goal is to get max
β̂

margin(β̂).

Then we can derive that

max
β̂ β̂0

margin(β̂) = max
β̂ β̂0

min
xi

[
dist(xi,Xβ̂ + β̂0)

]
= max
β̂ β̂0

min
xi

 |Xβ̂ + β̂0|∥∥∥β̂∥∥∥


= max
β̂ β̂0

min
xi

[
yi(Xβ̂ + β̂0)

‖β‖

] (
Let yi(Xβ̂ + β̂0) = 1

)
= max
β̂ β̂0

1∥∥∥β̂∥∥∥ subject to yi(Xβ̂ + β̂0) ≥ 1

1

= min
β̂ β̂0

∥∥∥β̂∥∥∥2 subject to yi(Xβ̂ + β̂0) ≥ 1

= min
β̂ β̂0

1

2

∥∥∥β̂SVM

∥∥∥2 subject to yi(Xβ̂ + β̂0) ≥ 1

= min
β̂ β̂0

1

2
β̂T β̂ subject to yi(Xβ̂ + β̂0) ≥ 1

The primal form of the support vector machine is min
β̂ β̂0

1
2 β̂

T β̂ (subject to yi(Xβ̂+ β̂0) ≥ 1) because this is an

optimization problem that can be solved by a quadratic programming (QP) algorithm. The general form of
a QP problem is:

min
ω

1

2
ωTDω + WTω

ω ∈ Rn

subject to Aω ≥ z

Given this form of the quadratic programming problem, we next transform min
β̂ β̂0

1
2 β̂

T β̂ (subject to yi(Xβ̂ +

β̂0) ≥ 1) into a QP problem. So let

ω(m+1)×1 =

[
β̂0

β̂

]
,

D(m+1)×(m+1) =

[
1 0
0 I

]
,

W1×(m+1) = 0

An×(m+1) = yi ·
[
1 X

]
,

zn×1 = 1

Finally, solving the QP problem will obtain the minimized ω. This helps us get β̂SVM.

2 The Dual Form

To solve min
β̂ β̂0

1
2 β̂

T β̂ (subject to yi(Xβ̂ + β̂0) ≥ 1), one often needs to transform the feature space X ∈ Rm

into higher dimensional space Φ(X) = Z ∈ Rk. This transformation is to facilitate an SVM to obtain β̂SVM

because data might not be able to separated in lower dimensional space. However, this transformation can
increase the computational complexity in that new dimension m might be much greater than the original
dimension k. Therefore, if we can make the QP problem independent of the dimensionality, then the compu-
tation will be simpler. To do so, we need to transform the original QP problem (primal form) into another,
which is the dual form QP problem.
The new problem now is min

β̂ β̂0

1
2 β̂

T β̂ (subject to yi(Zβ̂+ β̂0) ≥ 1) Next, we need to conduct several transfor-

mation. First of all, define a Lagrange function L accompanied by a Lagrange multiplier α:

L(β̂, β̂0,α) =
1

2
β̂T β̂ −

[
k∑
i=1

αi · yi(Zβ̂ + β̂0))

]

2

Second, we can derive that

min
β̂ β̂0

1

2
β̂T β̂ = min

β̂ β̂0

(
max
αi≥0

L(β̂, β̂0,α)

)
≥ min
β̂ β̂0

(
L(β̂, β̂0,α)

)
≥ max
αi≥0

(
min
β̂ β̂0

L(β̂, β̂0,α)

)

Third, because we are to minimize the Lagrange function, it’s useful to get the first order condition. We
take the partial derivative of L with respect to β̂0:

L(β̂, β̂0,α)β̂0 = 0

⇒−
n∑
i=1

αi · yi = 0

⇒
n∑
i=1

αi · yi = 0

Based on this result, we can simplify the equation max
αi≥0

(
min
β̂ β̂0

L(β̂, β̂0,α)

)
:

max
αi≥0,

∑n
i=1 αi·yi=0

(
min
β̂ β̂0

L(β̂, β̂0,α)

)

= max
αi≥0,

∑n
i=1 αi·yi=0

[
1

2
β̂T β̂ −

(
k∑
i=1

αi · yi(Zβ̂ + β̂0)

)]

= max
αi≥0,

∑n
i=1 αi·yi=0

[
1

2
β̂T β̂ +

(
k∑
i=1

αi ·
(

1− (yi(Zβ̂ + β̂0))
))]

= max
αi≥0,

∑n
i=1 αi·yi=0

1

2
β̂T β̂ +

k∑
i=1

αi ·
(

1− (yi(Zβ̂)
)
−

k∑
i=1

αiyi︸ ︷︷ ︸
0

·β̂0


= max
αi≥0,

∑n
i=1 αi·yi=0

[
1

2
β̂T β̂ +

k∑
i=1

αi ·
(

1− (yi(Zβ̂)
)]

3

Fourth, take the partial derivative of L with respect to β̂:

L(β̂, β̂0,α)β̂ = 0

⇒β̂ −
n∑
i=1

αi · yi · Z = 0

⇒
n∑
i=1

αi · yi · Z = β̂

Then we can make use of this result to simplify the equation max
αi≥0,

∑n
i=1 αi·yi=0

[
1
2 β̂

T β̂ +
∑k
i=1 αi ·

(
1− (yi(Zβ̂)

)]
:

max
αi≥0,

∑n
i=1 αi·yi=0,

∑n
i=1 αi·yi·Z=β̂

[
1

2
β̂T β̂ +

n∑
i=1

αi ·
(

1− (yi(Zβ̂)
)]

= max
αi≥0,

∑n
i=1 αi·yi=0,

∑n
i=1 αi·yi·Z=β̂


1

2
β̂T β̂ +

n∑
i=1

αi −
k∑
i=1

αyiZ︸ ︷︷ ︸
β̂

β̂


= max
αi≥0,

∑n
i=1 αi·yi=0,

∑n
i=1 αi·yi·Z=β̂

[
1

2
β̂T β̂ +

n∑
i=1

αi − β̂T β̂

]

= max
αi≥0,

∑n
i=1 αi·yi=0,

∑n
i=1 αi·yi·Z=β̂

[
−1

2
β̂T β̂ +

n∑
i=1

αi

]

= max
αi≥0,

∑n
i=1 αi·yi=0,

∑n
i=1 αi·yi·Z=β̂

−1

2

∥∥∥∥∥
n∑
i=1

αi · yi · Z = β̂

∥∥∥∥∥
2

+

n∑
i=1

αi


= min

α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjZ
TZ−

n∑
i=1

αi


subject to

n∑
i=1

yiαi = 0;αi ≥ 0

There are KKT conditions to be satisfied:

� Condition for the primal form: (yi(Xβ̂ + β̂0) ≥ 1

� Condition for the dual form: α ≥ 0

� First order condition:

n∑
i=1

αi · yi · Z = β̂

n∑
i=1

αi · yi = 0

4

� α(1− yi(Xβ̂ + β̂0)) = 0

The KKT conditions are importantly informative. When α > 0, the pair (Zi, yi) are on the boundary.
Therefore, they are called support vectors. Most important, the dual form of the SVM is also as QP problem.
Recall that the form of a QP problem is

min
ω

1

2
ωTDω + WTω

ω ∈ Rn

subject to Aω ≥ z

To solve the dual form, let

ω = α

D = yiyjZ
TZ

W = -1

A = Y

z = 0

To sum up,

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjZ
TZ−

n∑
i=1

αi

 subject to

n∑
i=1

yiαi = 0;αi ≥ 0

= min
α

1

2
αTDα−α subject to Yα = 0

⇒ β̂ =

n∑
i=1

αi · yi · Z

3 Implementing SVMs Using R

The key to implementing a support vector machine is to solve a quadratic programming problem. Now the
question is how to use programming languages to solve QP problems. As a matter of fact, most languages
have packages or libraries that we can use to do QP equations. Given these capacities, it is straighforward
to code support vector machines.

Now I start with the data:

> data(iris)

> df<-iris

Then we take a partial look at the data:

> head(df)

5

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

Columns 1 to 4 are flowers’ characteristics. The last column, “Species,” is a categorical variable:

> summary(df$Species)

setosa versicolor virginica

50 50 50

The two separable groups are (1) versicolor and virginica and (2) setosa. Let’s plot these two groups in terms
of their petal width and sepal width:

> characteristic <- cbind(df$Sepal.Width,df$Petal.Width)

> plot(characteristic)

> points(subset(characteristic,df$Species=="setosa"),col="blue",pch=16)

> points(subset(characteristic,df$Species!="setosa"),col="red",pch=16)

6

2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

characteristic[,1]

ch
ar

ac
te

ris
tic

[,2
]

Since the goal to solve QP problems, we need to import the library that can do this task:

> library(quadprog)

Now, let’s construct all the components of the QP equation:

min
ω

1

2
ωTDω + WTω

ω ∈ Rn

subject to Aω ≥ z

So we need to construct D, W, A, and z.
First, D is an identity matrix:

> D <- diag(1,3,3)

Second, W is a zero vector

7

> W <- rep(0,3)

Third, A = yi[1 X]

> A <- matrix(cbind(df[,"Sepal.Width"],df[,"Petal.Width"],rep(-1,nrow(df))),nrow=nrow(df),ncol=3)

> A <- A*df$Species

Last, z is an identity vector.

> z<-rep(1,nrow(df))

Once all the components have been specified, we can call a function from the library to solve the QP problem:

> beta = solve.QP(D, W, t(A), z)

Then the answer, ω, can be obtained by calling:

> beta$solution

> 0.83333333 -3.33333333 -0.08333333

Finally, plot the hyperplane (line) based on our solutions to the QP problem:

> characteristic <- cbind(df$Sepal.Width,df$Petal.Width)

> plot(characteristic)

> points(subset(characteristic,df$Species=="setosa"),col="blue",pch=16)

> points(subset(characteristic,df$Species!="setosa"),col="red",pch=16)

> abline(-0.08333333/-3.33333333,0.83333333/3.33333333,col="black")

8

2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

characteristic[,1]

ch
ar

ac
te

ris
tic

[,2
]

9

	The Primal Form
	The Dual Form
	Implementing SVMs Using R

