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1 The Idea of a Perceptron

The perceptron learning algorithm is one of the most basic algorithms in machine learning, and it was
originally created by Frank Rosenblatt in 1962. As a linear classifier, a perceptron belongs to the family
of supervised machine learning algorithms. Although simple and basic, the perceptron algorithm is of
tremendous importance because it can be applied to the design of other machine learning algorithms. For
example, one of the ways in which the neural networks can be implemented is to build a multilayer perceptron.
The goal of a perceptron is to find a separating hyperplane that successfully divides the data into two distinct
groups based on given labels. Importantly, to make the algorithm work, we need assume that the given data
are linearly separable. This assumption is called “linear separability.”

X = [xij ]m×n (xij ∈ Rm) and Y = [yj ]n×1 (yj ∈ (0, 1)), where i = (1, 2, 3, ...,m) and j = (1, 2, 3, ..., n).
Denote each data point (Xj , yj) where j = (1, 2, 3, ..., n) and Xj = [x1j , x2j , x2j , · · · , xmj ]m×1. Note that n is
the input size and m is the number of features. Assume that there is a separating hyperplane β0+

∑m
i=1 βixi =

0 (based on the assumption of linear separability) that separates {Xj |yj = 1} and {Xj |yj = 0}. The
hyperplane is k-1 dimensional. We can write a function to represent this idea:

f(Xj) = yj =

{
1, if

∑m
i=1 βixij ≥ β0

0, if
∑m

i=1 βixij < β0

β0 is simply a threshold. The logic behind this function is that we can dichotomize the data based on the
hyperplane the β0 +

∑m
i=1 βixij = 0 where β0 is the threshold. Note that yi is equal to 0 or 1. Thus we can

rewrite the function into another simpler format:

f(Xj) = sign

[(
m∑
i=1

βixij

)
− β0

]

= sign

[(
m∑
i=1

βixij

)
+ β0 · (−1)

]

= sign

(
m∑
i=0

βixij

)

Now the job of a perceptron is to perform f(xi) to correctly separate the data. In other words, by learning

the data, a perceptron should be able to find a hyperplane β̂0 +
∑m

i=1 β̂ixij = 0. Therefore, we can write a
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function that a perceptron is going to perform:

f̂(Xj) = ŷj = sign

(
m∑
i=0

β̂ixi

)
= sign

(
XT · β̂PLA

)
In summary, a perceptron can find β̂PLA so that ŷj is equal to yj . In this sense, a perceptron is a technique of
nonstatistical, nonparametric estimation. This is why a perceptron is a machine learning algorithm, although
we use the language of statistics to present it.

2 The Algorithm

An algorithm implementing the idea of perceptron is a trial-and-error approach. This means that the per-
ceptron learning algorithm makes mistakes until it finds a separating hyperplane. Assume

XT
(n+1)×(m+1) =


x00 x01 x02 · · · x0m
x10 x11 x12 · · · x1m
x20 x21 x32 · · · x2m

...
...

...
. . .

...
xn0 xn1 xn2 · · · xnm

 , β̂(m+1)×1 =


β̂0
β̂1
β̂2
...

β̂m

 ,Y(n+1)×1 =


y0
y1
y2
...
yn


Suppose a perceptron learning algorithm will run t times until β̂PLA is obtained. Denote X(t) the t-th
input of the data: [x0(t), x1(t), x2(t), · · · , xk(t)], and the size of the training set is n. So 0 ≤ t ≤ n. Let

β̂(t) = [β0(t), β1(t), β2(t), · · · , βk(t)]T and Y(t) = yt. Let xi(t) = 1. The initial value of β0(0) is set to be 0. We
specify a perceptron learning algorithm as follows:

Data: X, Y
Result: β̂
initialization;
while t ≤ n do

if
[
sign

(
X(t)β̂(t)

)
·Y(t)

]
> 0 then

β̂(t+1) = β̂(t);
else

β̂(t+1) = β̂(t) +
(
Y(t) ·X(t)

)
;

end

end

return β̂PLA = β̂(t+1)

3 An Implementation in R

The implementation of the perceptron algorithm is simple in R. As we can see the algorithm above, the code
will be very straightforward.
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> perceptron <- function(df,X,Y){

+ y <- Y

+ len_X <- length(X)

+ len_df <- nrow(df)

+ V_X <- c(rep(1,len_df))

+

+ ##---- To make the vector of X: V_X ----##

+ for (i in 1:len_X)

+ {

+ x_current <- X[i]

+ V_X <- c(V_X, eval(parse(text=paste("df$",x_current,sep=""))))

+ }

+

+ ##---- To make the matrix of X: M_X -----##

+ M_X <- matrix(V_X,ncol=(length(X)+1), byrow=FALSE)

+

+ ##---- To make the initial matrix of coefficients: B -----##

+ B <- matrix(c(0,rep(0,len_X)),ncol=1, byrow=FALSE)

+

+ do_not_match <- 1

+ while(do_not_match == 1)

+ {

+ do_not_match <- 0

+ for (i in 1:nrow(df))

+ {

+ do_not_match <- 0

+ if ( ((M_X[i,] %*% B) * (eval(parse(text=paste("df$",y,sep="")))[i]) ) <= 0 )

+ {

+ B <- B + ( M_X[i,]*(eval(parse(text=paste("df$",y,sep="")))[i]) )

+ do_not_match <- 1

+ }

+ }

+ }

+ return(B)

+ }

>

The parameter of “df” is the data that we would like to train, “X” is a list of the features we include, and “Y”
is a vector of the labels corresponding to each data point. The function will return a vector “B,” of which
the first component is β̂0 and the rest are β̂i where i = (1, 2, 3, ...,m).

4 Training Data

Now we can start to “train” our perceptron by calling the function with any data. To do so, I will use a
well-known data set introduced by Ronald Fisher: Iris flower data set, as an example. Since it is a built-in
data set in R, it is very straighforward to import the Iris data:
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> data(iris)

> df<-iris

Then we take a partial look at the data:

> head(df)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

Columns 1 to 4 are flowers’ characteristics. The last column, “Species,” is a categorical variable:

> summary(df$Species)

setosa versicolor virginica

50 50 50

This data set has been extensively explored, so I will skip the steps taken to find what are linearly sepa-
rable. According to Wikipedia’s artcile on Iris data, two groups are linearly separable based on variables
“Sepal.width” and “Petal.width.” The two groups are (1) versicolor and virginica and (2) setosa. Therefore,
let’s plot these two groups in terms of their petal width and sepal width:

> characteristic <- cbind(df$Sepal.Width,df$Petal.Width)

> plot(characteristic)

> points(subset(characteristic,df$Species=="setosa"),col="blue",pch=16)

> points(subset(characteristic,df$Species!="setosa"),col="red",pch=16)
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In the above plot, the x-axis is Sepal.width and y-axis Petal.width. Blue circles are the species of setosa
(group 2), and red circles are the species of both versicolor and virginica (group 1). The plot clearly shows
that the two groups can be separated. Next, the goal is to obtain a hyperplane by running the perceptron
function I built previously. Prior to calling the function, we need to make X and Y:

> X<-c("Sepal.Width","Petal.Width")

> Y<-"Species"

> perecptron(df,X,Y)

After running the perceptron function, we get a matrix where β̂0 = 0.0, β̂1 = −0.3, and β̂2 = −1.2. Thus
we obtain a separating hyperplane: −0.3x1 − 1.2x2 = 0

> plot(characteristic)

> points(subset(characteristic,df$Species=="setosa"),col="blue",pch=16)

> points(subset(characteristic,df$Species!="setosa"),col="red",pch=16)

> abline(0.0/-1.2,-0.3/-1.2,col="black")

5



2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

characteristic[,1]

ch
ar

ac
te

ris
tic

[,2
]

6


	The Idea of a Perceptron
	The Algorithm
	An Implementation in R
	Training Data

